



## In flight critical care during strategical aeromedical evacuation of SOF casualties

SOF Combat Medical Care Conference – Paris – October 20th, 2022



## <sup>2</sup>O Conflicts of interest

#### The assertions are the personal point of view of the author and do not represent the message of the french medical health service or french armed forces.



### – What are we talking about?

• SOF casualties

3

- Severely injured patients
- Low number (usually 1 to 3)
- Operations
  - Low footprint on the ground
  - No role 3

#### Precoce StratMEDEVAC



## • French survival chain



## O Definition – A combat operation

**MEDEVAC = Medical evacuation** 

#### **AERO-MEDEVAC**

#### **STRAT-MEDEVAC : from the theater to the homeland**

## These operations are decisive for the engagement of the armed forces.



## • An healthcare operation

# The aim is to provide en-route care with a continuum of quality of care and security for the patients.

Avoid monitoring rupture and load breaks, despite a challenging environment and despite isolation during several hours



## MEDEVAC triple interest

- Medical
  - Transport the patients to the best medical and surgical environment
- Psychological
  - Soldiers keep in mind that they rapidly will benefit from the best level of care
- Operational
  - Avoid the saturation of the medical facilities and allow the ongoing of combat operations



## O French activity

• Each year : around 800 patients

• Each year : around 50 intensive care patients



## O Typology of patients

- 2015 2017 : 2129 French patients
- Medicine or non-traumatic surgery : 48 %
- Trauma : 48 %
  - Non battle injury = 43%
  - Battle injury = 3%
- Psychiatry 5%



## O Intensive care patient and MEDEVAC

16 years period

|                         | Trauma patients ( $n = 245$ ) | Medical patients ( $n = 207$ ) | р       |
|-------------------------|-------------------------------|--------------------------------|---------|
| Age*                    | 28 [24-33]                    | 35 [28-45]                     | < 0,001 |
| SAPS-II*                | 13 [8-40]                     | 11 [8-16]                      | 0,027   |
| Initial GCS < 8**       | 33 (13%)                      | 19 (9%)                        | 0,202   |
| Vasopressor support**   | 74 (30%)                      | 29 (14%)                       | < 0,001 |
| Mechanical ventilation* | * 119 (49%)                   | 36 (17%)                       | < 0,001 |
| Emergency surgery**     | 174 (71%)                     | 14 (7%)                        | < 0,001 |

SAPS-II: Simplified Acute Physiology Score-II. GCS: Glasgow Coma Scale.

- \* median [1st-3rd quartile range].
- \*\* number (%).

Ponsin P et al. Injury 2020

Service de sante des armées

## O Intensive care patient and MEDEVAC

## The most severe patients are those suspectible of in-flight worsening events

Factors associated with in-flight worsening health status.

|                          | In-flight worsening health status ( $n = 123$ ) | Absence of in-flight worsening health status ( $n = 329$ ) | р       |
|--------------------------|-------------------------------------------------|------------------------------------------------------------|---------|
| Age*                     | 31,5 [25,0 ;36,0]                               | 32,7 [25,0 ;38,0]                                          | 0,198   |
| SAPS-II*                 | 23,18 [8,0 ;40,0]                               | 16,2 [8,0 ;18,0]                                           | <0,001  |
| Trauma**                 | 71 (58%)                                        | 174 (53%)                                                  | 0,42    |
| Cardiovascular disease** | 13 (10%)                                        | 56 (17%)                                                   | 0,121   |
| Initial GCS < 8**        | 17 (10%)                                        | 35 (2%)                                                    | 0,606   |
| Vasopressor support**    | 48 (39%)                                        | 55 (17%)                                                   | < 0,001 |
| Mechanical ventilation** | 64 (52%)                                        | 91 (28%)                                                   | < 0,001 |
| Emergency surgery**      | 65 (52%)                                        | 123 (38%)                                                  | 0,004   |
| Hemorrhagic shock**      | 22 (18%)                                        | 24 (7%)                                                    | 0,004   |

\* median [1st-3rd quartile range].

\*\* number (%).

Ponsin P et al. Injury 2020



## O What is necessary?

- A same langage
- Classification of patients
- Medical informations
- Logisitical organization
- Command and control medical and aeronautic
- Aircraft
- Medical teams
- Material and medical devices



## **O**— **STRAT MEDEVAC classification**

PMR STANAG 3204

#### PRIORITY

- P1 : Urgent < 12h</p>
- P2 : Priority < 24 H
- P3 : Routine < 72 H</p>

Notice to move = Delay from the order to the take-Off

#### DEPENDENCY

- D1 : High : MV (require intensive support)
- D2 : Medium : IV lines, O2, drainages, deterioration possible
- D3 : Low : no deterioration expected
- D4 : Minimal : help for moving



## O Command and control



## O MEDEVAC teams

- Crews of the French armed forces
- Medical doctors and nurses
- Anesthesiologist

#### On duty 24h 7/7

#### Aeronautic, Medical Competences and non technical skills



Teamworking





- Preconditionned material
- Boxes loaded and easy to plug on board in a few minutes (<1 hour)</li>
- MEDEVAC : a way for reconditionning the medical operational units (blood)







## O Medical devices









Confortable High distance Rapid flight

High quality of airport runway

Air superiority is required



## O Individual or bi-individual MEDEVAC

Elongation: 7400 km

Delay Alert – Take off = hours

50 flights each year







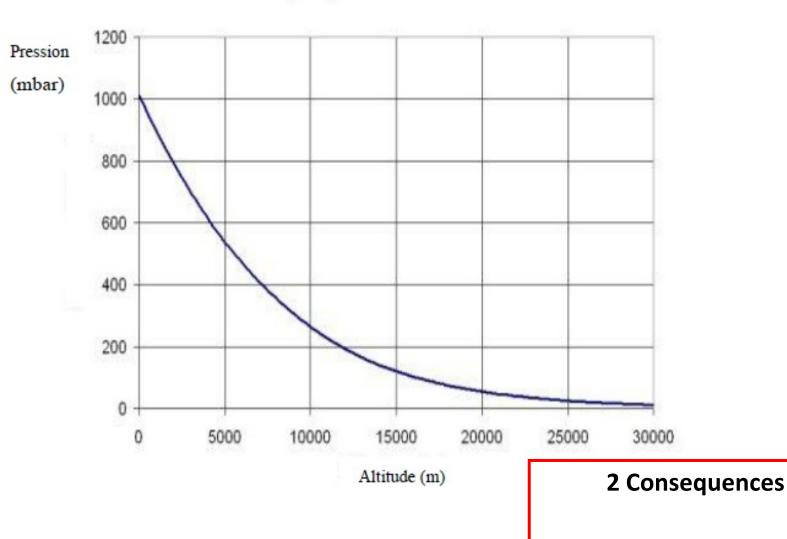


### ANTICIPATION

Need to anticipate the problem related to the pathology (refer to PMR and **to DoC to Doc call before the mission**)

Need to know your material and devices

Need to know the specific constraints due to the aircraft environment

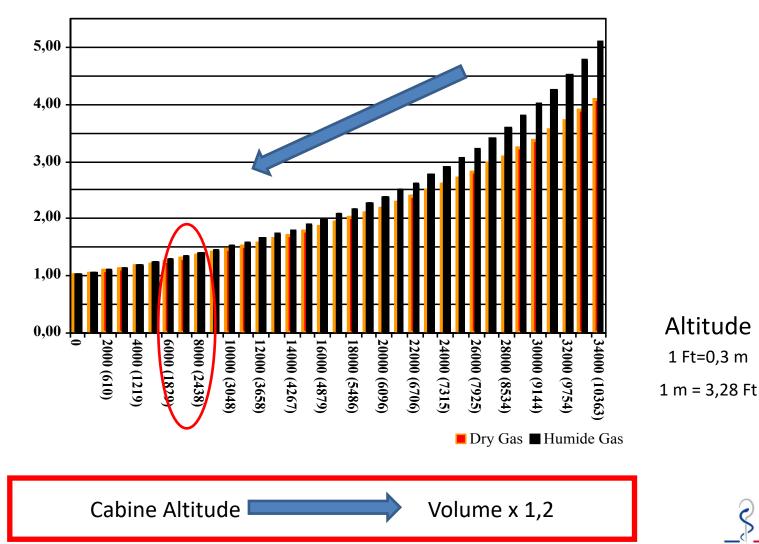



## • What are the specific constraints ?

- Related to altitude
  - Dysbarism : expansion of enclosed gas
  - Hypobaric hypoxemia
- Related to the flight
  - G-forces
  - Sickness
- Related to the cabin ambiance
  - Noise
  - Vibration
- Isolation



O Altitude - Pressure




#### Dysbarism Hypobaric hypoxemia

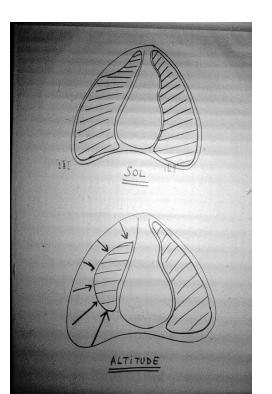
Service de santé des armées

### **Cabine Pressurization**

#### Gas expansion

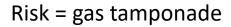





## **Altitude - Dysbarism and pneumothorax**

Boyle's law

27


P.V = k

## Gas volume varies inversely to pressure



Chest tube drainage BEFORE the flight







### O Altitude - Hypobaric hypoxemia

## Dalton's law and Henry's law Low pressure -> low PalvO<sub>2</sub> -> hypoxemia





## O Altitude - Hypobaric hypoxemia

- Little consequences for the well being person (crew member = asthenia)
- Little consequences = Patient under mechanical ventilation
- Anticipation is required for the patients with respiratory dysfunction who is not under mechanical ventilation





## **Constraints due to cabin ambiance**

- Noise
  - Alarm
  - Physical examination
- Vibration
  - Risk of material projection
  - Premature dysfunction of the medical devices





31

## Isolation = Anticipation Is this patients OK to flight?

- Haemorrhagick shock, splenectomy
- Tachycardia

32

- Haemoglobin is going down, lactate is going up
- NORepinephrin is going up
- 8 hours-flight to go



Isolation = Anticipation Is this patients OK to flight?

• Surgical hemostasis must be achieved

• Airway must be secured

33

Gas tamponnade must be prevented



## O Ergonomy



Boarding plan

#### Secure patient and devices

Prefer Access to the head

#### Access to chest tube drainage

Access to dressing



## O During the flight

#### Less is more

• Ongoing DCR

- catecholamine, transfusion,...

- Intensive care
  - Sedation, ventilation, preventing nurses (eschar...)
  - Intracranial pressure monitoring
  - Analgesia (locoregional...)



O Conclusion – Take-home message

Anticipation

The success is achieved before take-off

Causes of avoidable mortality must have been fixed before the flight

