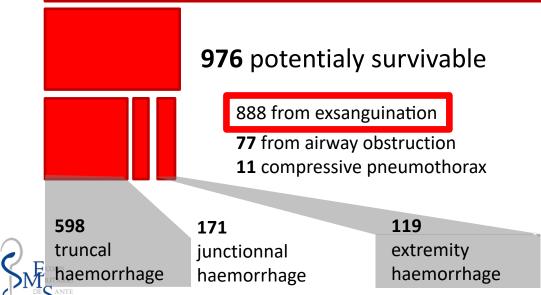


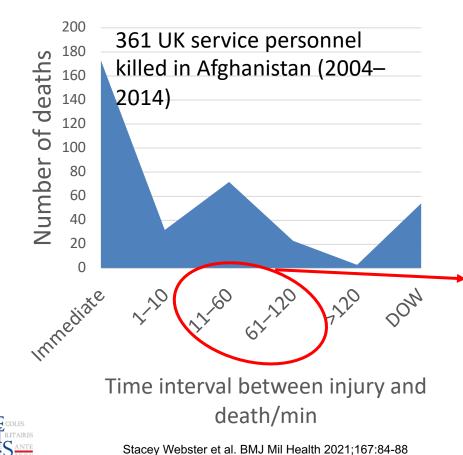
PREHOSPITAL TRANSFUSION ON THE BATTLEFIELD: FROM PROOF OF CONCEPT TO FINE TUNING



Paris SOF Combat Medical Care Conference October 20th 2022

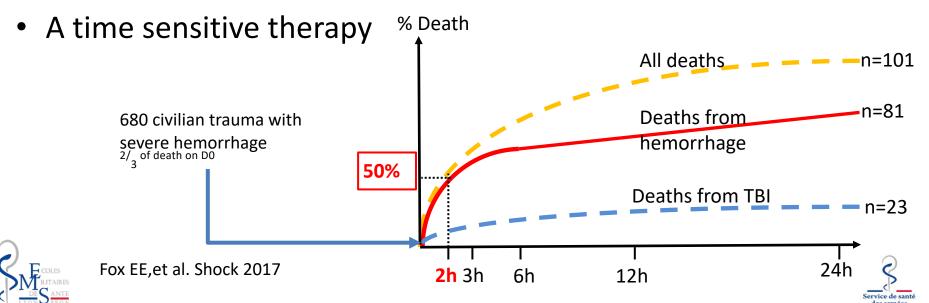
• Proof of concept: 1 – Haemorrage is the leading cause of avoidable deaths

Oct 2001 – june 2011, Afghanistan - Iraq : 4696 autopsies Eastridge BJ, et al. J Trauma Acute Care Surg 2012;73:S431–7


4 016 death before reaching a surgical facility

87% deaths are prehospital
¼ avoidable
90% from haemorrage

Proof of concept 2 – Death on the battlefield occurs early


- Battlefield mortality follows a Trimodal distribution
- 2/3 occurred within 10 min of injury
 - 1/3 is likely to benefit from a therapeutic intervention

• Proof of concept 3 – Transfusion save lives, if started Early

• An hemostatic transfusion regimen

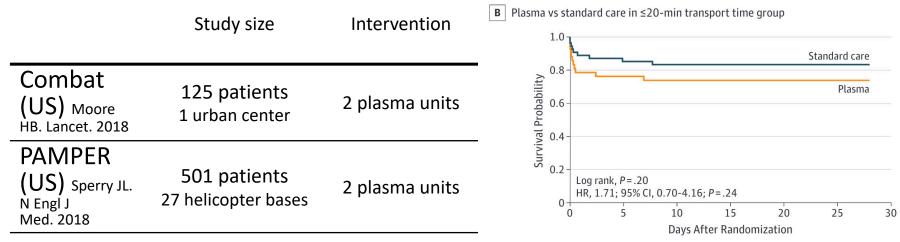
- A high plasma/pRbc ratio (>1/2) ≥ 50% in mortality Bhangu A, et al. Injury. 2013;44(12):1693–1699
- − A high Platelets/pRbc ratio (1/6) ≥ 20% in mortality Johansson PI, et al. J Emerg Trauma Shock 2012 ; 5 : 120-5

Cohort studies 1 – Early intervention works

- British Army medical emergency response teams (MERT)
- Associated with lower mortality for severely injured patients (ISS 20 – 29) compared with traditional MEDEVAC platforms -Apodaca A et al. J Trauma Acute Care Surg. 2013
 - 2009-2011: 975 coalition patients injured in Southern Afghanistan, transported from the point of injury to a military hospital,
- Early use of blood product associated with mortality **by** 50% after propensity scored analysis O'Reilly DJ, et al. J Trauma Acute Care Surg. 2014
 - 1,592 patients from 2006 to 2011 310 transfused after 2008

Cohort studies 2 – Early transfusion works

- 38% decrease in mortality for prehospital transfusions: 1,692 patients fully documented records (Iraq - Afgha) - Kotwal R et al. J Trauma 2018
- 400/502 patients matched by HR, 0.17 (95% CI, 0.04-0.73); P = .02 propensity score - Shackelford SA Time to transfusion >15 min or no transfusio et al. JAMA 2017 0.075 - 30d mortality decreased from 23% to 11% with prehospital 0.050transfusion Only observed with very early 0.025 Time to transfusion ≤15 mi transfusion (<15mn of Medevac rescue) 0 240 480 720 960 1200 1440 Time, min


Randomized controlled studies 1 – Early transfusion works

	Study size	Intervention	Delay injury - tranfusion	Receipt of full dose of BP	Mortality rate (control)	Mortality rate (BP)
Combat (US) Moore HB. Lancet. 2018	125 patients 1 urban center	2 plasma units	24 mn	32%	10%	15%
PAMPER (US) Sperry JL. N Engl J Med. 2018	501 patients 27 helicopter bases	2 plasma units	30 mn	90%	33%	22%

Fine tuning: 1 – Secondary analysis

- Grouped analysis:
 - 1. Prehospital resucitation AND prehospital time: decisive but not independent roles. Pusateri A. JAMA Surg 2019
 - Prehospital resucitation has no benefit for transport time < 20 mn
 - Prehospital resucitation basically allows to « buy time »

Fine tuning: 2 – Secondary analysis

- Predefined secondary analysis:
 - 1. Nature of resucitation. Guyette FX. Ann Surg 2019
 - PRBC + Plasma > Plasma alone OR PRBC alone ٠
 - Any blood product > Cristalloids
 - Nature of injury? Reitz KM. J Trauma 2019 2.
 - Benefit only for blunt trauma?

Fine tuning:

3 – Further randomized controlled trials

	Study size	Intervention	Delay injury - tranfusion	Receipt of full dose of BP	Mortality rate (control)	Mortality rate (BP)
Combat (US) Moore HB. Lancet. 2018	125 patients 1 urban center	2 plasma units	24 mn	32%	10%	15%
PAMPER (US) Sperry JL. N Engl J Med. 2018	501 patients 27 helicopter bases	2 plasma units	30 mn	90%	33%	22%
PreHoPlyo (Fr) Jost D. JAMA network open. 2022	134 patients 10 ground ambulances network	4 plasma units	51 mn	25%	15%	18%
Rephill (UK) Crombie N. Lancet Haematol. 2022	432 patients 4 ground/air ambulances network	2 plasma units 2 red blood cells units	56 mn	40%	45%	43% Ç

• Fine tuning: Summary of available data

- Most of fatalities (up to 90%) occur out of hospital
- ¼ is avoidable and hemorrhage is, by far, the leading cause
- In the military, an aggressive and an early transfusion policy has proven to be effective in reducing mortality
- Although somewhat confusing, civilian data are consistent and for severely bleeding patients suggest that:
 - Any blood product is beneficial if transfused early
 - Prbc + Plasma (Whole blood?)> any blood product alone > Crystalloids

• Fine tuning: The devil is in the details

- Blood products for everyone?
 ↔If not for wich patients?
- What sort of blood products?
 ↔Plasma?
 ↔Packed red blood cells?
 - \hookrightarrow Whole blood?

• Fine tuning: The devil is in the details

Blood products for everyone?

 →If not for wich patients?

→ Patients severely enough injured to benefit from transfusion

 → « ROC » criteria : SBP < 70 or <90 and HR > 110

 → ≥1 traumatic limb amputation with at least 1 located above the knee or elbow

• Fine tuning: The devil is in the details

- What sort of blood products?
 - ⇔Plasma?
 - Thawed? Dried?
 - AB type? →A type
 - \hookrightarrow Packed red blood cells?
 - Type O?
 - Rh neg?
 - \hookrightarrow Whole blood?
 - WFWB? FWB? CSWB?

• Conclusion

For patients severely enough injured to benefit from transfusion

 \hookrightarrow « ROC » criteria : SBP < 70 or <90 and HR > 110

 $\hookrightarrow \geq \! 1$ traumatic limb amputation with at least 1 located above the knee or elbow

- Dried plasma (type A of Flyp) is based on the best available evidence and is logistically the most sustainable solution
- The use of cold stored whole blood is the most promising option, but requires an extremely robust supply chain

Fine tuning is still in process...

