10 years of medical support in French SOF airborne operations

Solution States and states are stated at the states are states and states are states

High Altitude (HA) jump

Military free fall : day and night, alone and team, HALO and HAHO, tactical infiltration, with drop bag and weapons,

FL120 maximum (3600m)

Heavy load drop bag

Jump with 130kg (290 lbs) load, day and night, HALO, HAHO, tactical infiltration

Tandem pilot

To carry a passenger by day and night, HALO, HAHO, tactical infiltration, drop bag ad weapons

Very High altitude (VHA) jump :

Solution Solution: Solution: Solutio

High Altitude (HA) jump

Military free fall : day and night, alone and team, HALO and HAHO, tactical infiltration, with drop bag and weapons,

FL120 maximum (3600m)

Heavy load drop bag

Jump with 130kg (290 lbs) load, day and night, HALO, HAHO, tactical infiltration

Tandem pilot

To carry a passenger by day and night, HALO, HAHO, tactical infiltration, drop bag ad weapons

Very High altitude (VHA) jump :

Solution Solution: Solution: Solutio

High Altitude (HA) jump

Military free fall : day and night, alone and team, HALO and HAHO, tactical infiltration, with drop bag and weapons,

FL120 maximum (3600m)

Heavy load drop bag

Jump with 130kg (290 lbs) load, day and night, HALO, HAHO, tactical infiltration

Tandem pilot

To carry a passenger by day and night, HALO, HAHO, tactical infiltration, drop bag ad weapons

Very High altitude (VHA) jump :

Solution Solution: Solution: Solutio

High Altitude (HA) jump

Military free fall : day and night, alone and team, HALO and HAHO, tactical infiltration, with drop bag and weapons,

FL120 maximum (3600m)

Heavy load drop bag

Jump with 130kg (290 lbs) load, day and night, HALO, HAHO, tactical infiltration

Tandem pilot

To carry a passenger by day and night, HALO, HAHO, tactical infiltration, drop bag ad weapons

Very High altitude (VHA) jump : To use all previous qualification > FL 120 (oxygen supply)

Solution Solution: Solution: Solutio

High Altitude (HA) jump

Military free fall : day and night, alone and team, HALO and HAHO, tactical infiltration, with drop bag and weapons,

FL120 maximum (3600m)

Heavy load drop bag

Jump with 130kg (290 lbs) load, day and night, HALO, HAHO, tactical infiltration

Tandem pilot

To carry a passenger by day and night, HALO, HAHO, tactical infiltration, drop bag ad weapons

Very High altitude (VHA) jump :

MEDICAL CONSIDERATION

35,5% jumps with injuried = 1,24 (0-3) injuried by jump

11,8% jumps with major injuries 23,6% jumps with only minors injuries

12 on 41 injuried (29%) were tandem passengers

97,5% injuries on landing

Injury rate \rightarrow only major injuries = 0,8%

Injuries

classicaly found in literature

Injuries severity

Minor (71%) sprain, contusion/abrasion, mild trauma

Major (29%) fracture, dislocation, TBI, severe sprain

No studies \rightarrow military free fall airborne operations injuries

1 study \rightarrow MFF training injuries

Some studies \rightarrow civilian skydiving injuries

Military free fall training injuries.

Glorioso JE Jr, Batts KB, Ward WS. Mil Med. 1999 Jul;164(7):526-30.

Epidemiology of **skydiving**-related deaths and **injuries**: A 10-years prospective study of 6.2 million jumps between 2010 and 2019 in France.

Fer C, Gulavarch M, Edouard P. J Sci Med Sport. 2021 May;24(5):448-453. doi: 10.1016/j.jsams.2020.11.002. Epub 2020 Nov 13. PMID: 33257775

The epidemiology of **injury** in bungee jumping, BASE jumping, and **skydiving**. Søreide K.

Med Sport Sci. 2012;58:112-29. doi: 10.1159/000338720. Epub 2012 Jul 18.

The epidemiology of **skydiving injuries**: World freefall convention, 2000-2001. Barrows TH, Mills TJ, Kassing SD. J Emerg Med. 2005 Jan;28(1):63-8. doi: 10.1016/j.jemermed.2004.07.008.

- Most common injuries : lower axtremities fractures , sprains, dislocations, contusion, abrasions, spine/head trauma
- Landing = most frequent injury mechanism
- Night and combat equipment = risk factor for injury \rightarrow airborne operation
 - comparable injuries
 - significantly lower injury rates

Interesting : low experience associated with higher risk of injury

Compared to static line

Airborne operations	Training	
Injuries rate = 8,6% to 12%	Injuries rates = 0,3 to 13,5%	
Same type of injuries	increase significantly : night, combat equipement, load	

MFF seams to be safer for airborne operation \rightarrow but not without risk !

- Kotwal et al. Army ranger casualty, attrition, and surgery rates for airborne operations in Afghanistan and Iraq. Aviation space and environmental medicine 2004;75(10):833-40.
- Hallel et al. Parachuting Injuries : A retrospective study of 83818 jumps. J Trauma 1975; 15:14-9
- Craig et al. Parachuting injuries during Operation Royal Dragon, Big Drop III, Ft Bragg, North Carolina, May 15/16 1996. Military Medicine. 1999; 164:41-3.
- Kragh et al. Parachuting injuries: A medical analysis of an airborne operation. Military medicine.1996;161(2):67-9.
- Bricknell et al. Military parachuting injuries: a literature review Occup. 199;49(1):17-26
- Borba Neves et al. Military parachuting injuries in Brazil. Injury. 009 Aug;40(8):897-900, AUG
- Craig et al. Military static line parachute injuries in an Australian commando battalion ANZ J Surg. 2008 Oct;78(10):848-52 UST 01, 2009
- Hay et al. Parachute injuries in the Australian Airborne Battle Group in 2004. ADF Health.2006 Oct;7:73-7
- Dhar et al. Retrospective Study of Injuries in Military Parachuting. Medical journal armed forces india. 2007;63(4):353-55

Landing = critical time

- Especially by night
- Sometimes unprecise landing zone weather conditions :
- QFE = altitude
- Wind direction and speed
- Rate of descent increase with load

Innovative project to secure landing → radar altimeter

Focus on tandem passengers 29% of injuried

High rate in accordance with littérature*

Tandem passenger

often specialist not MFF qualified added value to the team

We have to secure them = airbag (depend on weather condition, tandem pilot experience)

* Chianea et Al. Accidentologie en tandem dans l'armée française. Etude descriptive rétrospective de 2012 à 2017. Med Arm 2019;47(2):107-111.

Tandem landing position

Air bag

Full inflated

Evacuation

9 injuried evacuated

Only major injuries

Evacuation time	< 4h	<12h	12h < MEDEVAC < 24h	missing
MEDEVAC	1	4	2	2

2 severe injuries non evacuated : shoulder dislocation posterior cruciate ligament rupture

1 TBI with initial LOC : lost for 2 hours \rightarrow recovered by RESCO mission > 12 hours later

75% severe injuries evacuated

0% minor injuries evacuated

Long evacuation time

THE decision ↓

discretion Vs evacuation continue mission Vs best medical care → What is the most important ?

Medical advise for Commander decision

Best option : planed In action decision = communication MC / JMED / PECC / TU Doc

robust medical support = decision making +/- PFC

HAHO - tactical infiltration : Several km betwen drop point and landing zone

Risk = team splitting → isolate(s) or distant(s) operators <u>Worst situation : unconscious isolated patient</u>

> Radio contact ? GPS marker ? Drone research ?

going to his position Vs direct MEDEVAC to be discussed during mission planing

 $\mathsf{MEDEVAC} \rightarrow \mathsf{reduced} \mathsf{NTM}$

Drop zone drone view Parachute dispersion

Delayed MEDEVAC is an option

when ?

- team on target : discretion no more needed
 - \rightarrow MEDEVAC not available for a WIA
- End of action : if WIA wich is the first to be evacauated ?
- PECC organizes a second MEDEVAC ?

Injuried left alone ? with safety ? with a care giver ?

Best = planed procedure In action decision making = communication

Catched by drone

Impact on the mission

only 1 mission canceled

(physician severely injuried)

no major delay on TOT

Airborne operation = high risk of injury $\rightarrow 1/3$ jumps

Have to consider one or several injuried → anticipate the medical managment on drop zone Allow enough time between landing and starting ground insertion

Medical support

63% jumps with a physician (alone or with a nurse)
→ 44% with a pair physician/nurse

18% jumps with only a nurse 17% jumps with only medics

Direct action missions = **high risk of injury** (34% french SOF wounded)* Intelligence/special recon = 10% french SOF wounded*

French SOF medical support = **pair physician/nurse** → providing DCR on POI Medical support have to be **present on mission start**

Physician alone : no nurse qualified / nurse with an other team / nurse in MEDEVAC

Physician on intel/special recon : extreme isolation / long mission / no nurse qualified

Medical team : jumps with the firsts

* Prof, Col TRAVERS S. non published datas. French special operation WOI management : 2016-2020.

multiple drop zones

It can be tactically interesting

Spliting medical team decrease the level of care

medical advice \rightarrow commander decision

SOF medical team

able to work in demanding conditions efficient in uncomfortables conditions Injuried management on drop zone

by night / discretion = not to compromise drop zone

Anticipating rapid analgesia (IN, inhaled methoxyflurane ...)

Dispersion of injuried Isolated caregiver

Specific additional equipment for jump support : in drop bag abandoned with canopy if not used (KED, elastic tape, splint) Heavy load drop bag ? Time to recover ? → resupply

Future = autonomous delivery systems ?

CONCLUSION

Supporting the jump ... and especially the following mission

Airborne operation = high risk injury Injuried on combat jump is NOT an unexpected situation

evacuate Vs continue the mission

decision making = commanding officer with medical advice

delayed evacuation = prolonged field care

Anticipate : medical management time on DZ abort conditions (number of injuried, speciality) isolated injuried recovery

QUESTIONS ?

THANK YOU

